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We consider equilibrium configurations of n identical particles in three dimen- 
sions interacting via two-body potentials depending only on the distance. The 
symmetry group of a given configuration is defined as the subgroup of 
isometries which leaves it invariant, up to permutations of the particles. We 
prove the stability of the symmetry in the following sense: the symmetry group 
of an equilibrium configuration is the same for the neighboring equilibria arising 
from any small enough perturbation of the initial potential. Furthermore, for a 
large class of realistic potentials, the existence of nontrivial symmetries is 
proved, thus giving a completely geometrical, although partial, approach to the 
classical crystal problem. 

KEY WORDS: Classical crystal theory; crystallographic groups; stability 
of equilibrium; differential topology; Morse property. 

1. INTRODUCTION 

The problem of the classical theory of crystals is to show that, for realistic 
two-body potentials, the corresponding ground states, i.e., configurations 
with minimal energy per particle, present symmetries of crystal type. Up to 
now, rigorous results have been obtained essentially for one-dimensional 
systems. (1-7) To illustrate the specificity of our own work, let us briefly 
recall these results: Ventev6gel and Nijborr (4-6) have studied the stability 
of (one-dimensional) infinite periodic equilibrium configurations, with re- 
spect to periodic perturbations (of arbitrary length). The authors define a 
class of potentials such that there is one and only one periodic configura- 
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tion that minimizes energy per particle (in the set of periodic configura- 
tions), this equilibrium being moreover stable with respect to all periodic 
perturbations (of arbitrary length) of the positions. 

The main difficulty of this approach is that one deals directly with 
infinite systems: the total potential energy is then infinite, and one must 
work with potential energy per particle, the definition of which makes sense 
only under periodicity assumptions. However, this approach is interesting 
because the authors draw conclusions about a (whole) class of potentials 
rather than about a special one: the point is that, unless the potentials are 
completely specified by the physical theory, as in the Coulomb case, one 
usually deals with more or less phenomenological expressions for them. In 
such a situation, the relevance of the conclusions depends on their stability 
with respect to physically allowed variations of these potentials. In this way, 
one is led to work with open sets of potentials, for an adequate topology. 

Another possible approach has been used by Radin et al., (~'3) and 
consists in studying the limit n ~ oe of the sequence of ground states of n 
particles, interacting via a Lennard-Jones potential. The authors show that 
the sequence converges toward a periodic lattice in the limit n ~  oe. 
However, the result is obtained only in the special case of the Lennard- 
Jones potential. 

In a subsequent paper, Hamrick and Radin have dealt with the natural 
question of the stability of the property of a potential, to produce a lattice. 
The authors conclude that this ability depends very sensitively on the 
potential, in the following way: They choose a potential simple enough to 
clearly give rise to a lattice, and they build an ad hoc perturbation, 
depending on a small parameter e > 0, such that, for any e, the correspond- 
ing equilibrium for the perturbed potential is aperiodic. However, in their 
counterexample, the perturbation of the potential energy and of its first 
derivative actually tends to zero with e, but the second derivation remains 
finite, and therefore the perturbation cannot be considered small for this 
problem, since the second derivative must be controlled. In other words, 
the stability of a property of the potential makes sense only once the 
potential space is given a topology compatible with the physical position of 
the question. 

In a previous paper, (7) we stressed this point of view and developed 
methods based on functional analysis to-study the equilibrium configura- 
tions of finite systems in one dimension. We proved that for "almost all" 
two-body interactions, and for all n, the corresponding n-body energies give 
rise to nondegenerate equilibria. In mathematical terms, we proved that the 
set of potentials which yield Morse functions as n-body energies is residual 
in the space C~(R +, R) of the potential. Moreover, the Morse property is 
precisely the necessary and sufficient condition for a variation X+ of the 
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potential to give rise to a continuous trajectory of equilibria, for )t small 
enough. Using this result, we considered the perturbations of equilibria 
under an arbitrary variation of the potential and showed that a certain 
symmetry property, namely, the existence of a center of symmetry for the 
configurations, is stable. Moreover, this stability implies the existence of an 
open set of potentials such that all the corresponding n-body energies give 
rise to equilibria having this symmetry. 

In the present paper, we give similar results for the three-dimensional 
case. We first prove, as in the one-dimensional case, that for almost all 
potential, the corresponding n-body energies are simultaneously Morse 
functions. As stressed previously, this is the condition to get a continuous 
trajectory for the equilibrium, under a variation of the potential. We are 
thus led to study the stability of symmetry properties of the equilibria. 
More precisely, we show that, if a (nondegenerate) equilibrium configura- 
tion is invariant under the action of a finite subgroup of the isometry group 
of N3 (e.g., a crystallographic point group), then, the neighboring equilibria 
corresponding to variations of the potential exhibit the same symmetry. 
Moreover, we show that, for a large class of realistic interactions, there exist 
equilibria with such nontrivial symmetry groups. 

As a consequence of this approach, it seems that the classical crystal 
problem splits into two steps: on one hand the existence of symmetry for 
the equilibrium configurations (which appears to be of geometrical nature) 
and on the other hand, the particular symmetry of the ground state, which 
depends on detailed global properties of the potential. 

In the next section we present the mathematical framework of our 
problem. In Section 3 we show how to take into account the invariance 
with respect to isometries in order to give proper definitions of equilibria 
and of their nondegeneracy. In Section 4 we prove that for "almost all" 
interactions the n-body energies are simultaneously Morse functions. This 
result is obtained through a natural stratification of the configuration 
space. 

In Section 5 we prove our main result concerning the stability of the 
symmetry of the equilibria. We make use of another stratification of the 
configuration space, the strata of which are smooth submanifolds corre- 
sponding to finite subgroups of the isometries. In the last section we draw 
some other consequences of our approach. In particular a large class of 
interactions is proved to yield equilibria with nontrivial symmetries. 

2. D E F I N I T I O N S  A N D  N O T A T I O N S  

We first define the configuration space for n particles in three dimen- 
sions. We shall assume that the configuration x = (x I . . . . .  x,), x,. E R 3, is 
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actually three dimensional, i.e., there is no 2-plane in ~3 containing all the 
particles. Besides, we require the particles to have distinct positions. Thus 
our configuration space X (n) for n particles is the dense open subset of R 3n 
given by 

X (~) = { x  = ( x l , . . . ,  x , ) l x  is 3-dim, and i =/=j~ x i =/= xj} (1) 

The 2-body potentials are assumed to be smooth functions of the 
distance given by C ~ functions q0 on ]0, + m[, 

For any n >/2, the n-body energies ~(~) are C ~ functions on X (n) 
defined by 

c0(")(x) = ~ ~(LIx,~ll) (2) 
i < j  

where we put x 0 = x i - xj and II II is the Euclidean norm in ~3. 
Now a configuration x E X (") is an equilibrium for the interaction % 

iff all the partial derivatives of q~(") vanish at x, in other words, iff x is a 
critical point of q0 (n), that is, the differential satisfies d~(")(x)  = O. 

Since rp (") involves the various distances Ilxyl], we introduce the 
following notations for the differentials: 

d l l xy l [  = IIxotl-l%(x) 
where ~/j(x) is a one-form on R 3" defined by 

,Ax) .  ~ = (x/j, %) (3) 

with ~ = ( ( ~ , . . . ,  (,), (y = ( i - ~ j  and where ( , ) is the ordinary scalar 
product in R 3. 

Using these notations, the differential of cp (") takes the following form: 

d~(")(x)  = ~ ~'(ll x,jll)llx~ll- X%(x) (4) 
i<j 

Now if x is a critical point for ~0 ("), the degeneracy of the equilibrium 
and its stability are described by the Hessian of q0 (") at x which is the 
symmetric two-form on R 3" given by 

n x  ~ (n~ = e~< j [ ,~" ( li x~ll ) ll x~ll - 2 - ~' ( [I x~ll ) [l xijll - 3 ] ,~( x ) | ~ (  x ) 

+ ~ ~'(llxoll)lIx~l I-  Ic~ (5) 
i<j 

where e~j is a two-form on R 3" defined by 

,y(~,~) = (% ,~,j) (6) 

with ~ = (~ . . . . .  ~,), ~ = ( ~ , , . . . ,  ~,), ~U = ~ - ~9, ~ = ~; - ~9 and where 
( , ) is the scalar product in ~3. 



Equilibrium Configurations of N Particles in Three Dimensions 479 

Actually, since the n-body energies q~(n) are invariant with respect to 
global three-dimensional isometrics acting on X ("), we must take into 
account this Euclidean invariance to give a relevant meaning to the 
nondegeneracy and positivity property of the Hessians. 

3. EUCLIDEAN INVARIANCE AND REDUCTION OF THE 
CONFIGURATION SPACE 

Let I = ~3X 0(3) be the isometry group of R 3, i.e., the semidirect 
product of translations and rotations. 

If ('r, 0 ) ~  I, we denote by 0",O) (n) the natural action on ~3,. If 
x E X (n) we have 

(%p)(" )x  = (%p)("~(x,  . . . . .  x . )  = ( ( % o ) x ,  . . . . .  O-,p)xo)  (7) 
and 

(.r, p )x i  = T + pxi  (8) 
Let I(x) be the orbit of x ~ X (') under the action of I. Then it follows 

from a theorem of elementary geometry [8] that 

I(x) = { y ~ X (") IVi, j, )}xo)l = IlY/jl] ) (9) 

For any x E X ("), I(x) is a submanifold of X ("), and we denote by 
(x) its tangent space at x. One checks that 

~(x) = {~ ~ ~ "  I Vi, j ,  (xo., ~,j) = O} 

= {~E R3"lVi, j, 9 ( x ) .~=  0} (10) 

The set of one-forms at x, which vanish on J(x) is a vector subspace 
~(x) • of the cotangent space T*X ("), and it follows from (10) that 

~(x)• { O= ~,,aij,ij(x)laij ~R)  ( l l )  
i<j 

Since the two-body potentials qv depend only on the distance, the q0 (") 
are constant on the orbits so that the differentials have the property 

dd")(x) = 0 on  ~ (x )  (12) 

and for any critical point x of ~v (n) the Hessian satisfies the following 
equivalent relations: 

KerHx@ ") D ~(x), ImHxep (") c ~(x) • (13) 

Actually, it follows from (5) that the terms 

[ , ~ ' ( l l x , : , . l l ) l l xo l l - 2  _ w,(llxdl)llxo.il-3]~o(x) | ~o.(x) 
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obviously satisfy (13). If x is a critical point of ~l) (n) w e  have 

= , '(llxijll)ll%ll-lc (x) = o 
i<j 

Then dep (") vanishes on I(x) and by derivation 

~ ~'(llxyll)l[x/j[I-'% = 0 on ~(x) 
i < j  

which yields (13). 
Now, as soon as one deals with mechanical systems with symmetry, 

one usually proceeds to the reduction of the configuration space in order to 
get rid of the useless coordinates describing the orbits. 

In the present case, since we consider only three-dimensional configu- 
rations of distinct particles, the reduced space X (")/I is a smooth manifold 
on which we have the usual definitions of nondegenerate critical points and 
of Morse functions (Hessians of maximal rank at each critical point). 
However, for the sake of simplicity, we shall not work in the quotient 
space, but we give the corresponding equivalent "lifted" definitions for 
the "Morse property" of the n-body energies at a "nondegenerate" crit- 
ical point: 

KerHxrp (") = ~(x), ImHx~p (") = ~(x) • (14) 

For instance let h 0 be the following "standard" Hessian at x: 

h 0 = ~ ~ ( x )  | ey(x) 05)  
i<j 

Then Kerh 0 = ~(x) and consequently Imh 0 = ~(x) -L. 
The next section is devoted to the proof that for "almost all" 2-body 

potentials % the n-body energies ep (n) are "Morse functions" in the previous 
sense, for all n. 

4. GENERICITY OF THE MORSE PROPERTY AND 
STRATIFICATION BY DISTANCES 

As in a previous paper, (7) the Morse property of the n-body energies is 
the main feature which is used to investigate the effect on critical points, of 
perturbations of the 2-body potential. In this section we shall prove that 
this property is generic. 

Let us first recall some mathematical definitions (see Refs. 7 and 9 for 
further details). A property is said to be generic on a given topological 
space, if it holds for all points in a residual set. 

A subset of a topological space is residual if it is presented as the 
intersection of a countable family of dense open sets. 
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In our case, the set of potentials C ~(]0, m[) will be endowed with the 
so-called compact-open (weak) and Whitney (strong) topologies. We recall 
that C~(]0, m[) is a Baire space for the strong topology, i.e., the residual 
sets are dense. (9'11) 

Let us-mention that the genericity of the "Morse property" for the 
n-body energies does not follow from the well-known theorems of func- 
tional analysis for C ~(~P) (see Ref. 9). 

Actually, these theorems use perturbation methods in order to remove 
the possible degeneracy of critical points. In our case the allowed perturba- 
tions of the n-body energies q~(") arise from perturbations of the 2-body 
potentials cp and therefore are submitted to constraints that do not exist in 
the general case. Furthermore it is clear that such perturbations step in only 
by the values they take in the neighborhoods of the distances actually 
realized by the given equilibrium configuration. Thus it is convenient to 
split X (~) into classes described by means of equalities of distances between 
particles, given by the following definition. 

Definit ion.  For any a E X (~) let 

Da = (x ~ X(") I IIxiflJ = Ilx~z[I **  Ilao.l! = Ira~zll } (16) 

The partition of X (") arising from (16) will be referred to as the stratifica- 
tion by distances. 

It follows from the very definition that each set D a is a semialgebraic 
variety, i.e., is defined by a finite family of algebraic equations or inequa- 
tions. 

A classical theorem of Whitney (~~ asserts that any connected semial- 
gebraic real variety is a finite disjoint union of smooth manifolds one of 
them, which is of maximal dimension, being open and dense. 

In fact we shall not use the explicit decomposition of D~ but only the 
following properties of the tangent spaces to its smooth parts: 

If A is a smooth part of D~, one checks that A is invariant by I and 
that the tangent spaces TxA satisfy 

where 

~(x) C i r a  C | (17) 

~ ( x ) =  (~ ~ a3"l Ilx/j./I = Ilxk, ll~(x~,~,j)=(x~,,~kz)) (18) 

In particular, if A is the open submanifold of D a, a consequence of 
Ref. 10 is that 

Vx E A, TxA --- @(x) (19) 

As mentioned above, since the 2-body potentials q9 depend only on the 
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distances, the differentials and Hessians of q0 (') are submitted to con- 
straints. 

We define g(x)  and %(x), for x E X ("), as the subspaces of respec- 
tively one-forms (4) and symmetric two-forms (5) spanned by differentials 
and Hessians at x. Then 

~(~) = (0 

%(x) = (h  

= ~ ,  a i j ~ ( x )  ll[xoll = IlXk1[I ~a~  = a++} 
i < j  

= Z | e0(x) + c,je ] 
i <j 

(20) 

x IlxylL = I l xk t iL~bi j  = bk~, c o = Ckl and ~ cij%.(x) = 01 (21) 
i< j  ) 

It follows from (12) and (20) that $(x)  C ~(x) • 
Now let A be an arbitrary smooth part of the stratification of X (') and 

E= ((x,O)[x c A ,  0 ~ ~(x) • (22) 

N =  ((x,O)[x ~A,O E Vx A• (23) 

define F :  A ~ E by F(x) = (x, dep (') (x)). Then we have 

Lemma 1. If x E 5 is a critical point of ~('),  the following condi- 
tions are equivalent: 

(i) Hx(eP(')Ia)(T,:A) = ~(x) • I rxa (24) 

i.e., x is "non-degenerate" for the restriction ep (') la. 

(ii) Hxq~(')(T):A) + Tx A• = ~(x) • (25) 

(iii) F is transverse (9) to N at x : F ~  xN, i.e. 

Im TxF + T~,0N = Tx,oE (26) 

Proof. If x ~ A is a critical point of @') ,  the Hessian of the restric- 
tion qQ(') I A is the restriction of the Hessian to TxA (see Ref. 9, p. 65), and 
therefore (i) r (ii). 

There is a natural isomorphism of Tx,oE onto TxA • ~(x) • which 
maps Tx,oN onto TxAX T~A • and TxF(O on (fg, Hx@')(O) for any 
E TxA. Then (iii) reads 

+ rxAX r x A •  x • 

and clearly (ii)r �9 
Using appropriate perturbations of the potentials we shall prove that 

the equivalent conditions of Lemma 1 hold densely on C~(]0, + oe[), on 
suitable compacts of A. 
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Let ~ E 2x and ([l~o.ll)i<j the set of corresponding distances. There 
exist finite collections { U,.j), { V~j), { WO. ) of relatively compact open sets in 
]0, + m[ such that 

(i) IIX01I ~ U/j, Utj C Vty , and V/j C Wry 

(ii) 11~[I = II~k, II ~ U+j = Uk,, V+j = V~+ and W,/= Wk, (27) 

The intersections in 2x of the pull-back of { U~j}, { V,).), and {W~j) by 
means of the mappings x-->~xo.II contain relatively compact open sets U, 
V, and W s u c h t h a t ~ U ,  U c  V a n d  V c  W. 

4.1. Local Perturbations on U 

For each pair (V,)., Wij }, one can take an Urysohn function 0,j on 
]0, + ce[ such that 

00l~ , j  = 1, o~fw,;=o 
where Wi~ is the complement of W,~/. 

Let A be the set of a -- (a0.}i<j in N "( '-0/2 such that I1~1[ = I[~kztl 
a~j = akt. The above construction allows us to associate to any a ~ A the 

"variation" ~(a) ~ C ~(]0, ~ [ )  defined by 

~(a, t) = 1 E Oij(t)mij 'aijt: (28) 
i <j  

where m,j is the number of pairs k < l such that 11~,711 = II~kzll, 
This definition is justified by the following property of the correspond- 

ing n-body energy Lp(a)(n) : For x ~ V, 

1 @("~(a,x) = -~ ~ ao.llxo.lf z (29) 
i < j  

d~("~(a, x) = ~ aijeij(x ) (30) 
i < j  

Define G: A • A ~ E, [see (22)], by 

~ ( x , a )  = ( x , d ( ~  + ~(a))~">(~)) (31) 

Let 
F= {(x,a) ~ V •  (x,0)} (32) 

that is (x ,a )E  F c=>x is a critical point of the perturbed n-body energy 
(~0 + ~p(a)) ("~ in V. 

Fo = (x ~ V[ G(x,O) = (x,0)} (33) 

Then F o = F N (V • (0}) is the set of critical points of cp (") lying in V. 
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Lemma 2. If (x, a) ~ I', the following conditions are equivalent: 

(i) nx(q~ + ~(a))(")[ z~(T~A) + T~(d+('O)(T,a,x) = ~(X)• 

(ii) H~(ep + +(a))(")(T~h) + T~(d~("))(T~A,x) + Tx h i  = ~(x) j- 

(iii) G is transverse to N at (x, a) : G O~ x,~N, i.e., 

Im Tx,aG + Tx,oN = Tx,oE 

(34) 

(35) 

(36) 

Proof. The equivalence of (i) and (ii) follows from the same argu- 
ment as in Lemma 1. The isomorphism mentioned above maps T~,,,G(~, a) 
on (~,H~(ep + ~(a))(n)(~) + Ta~(')(a,x)) for any (~,a) ~ TxA • TaA and 
clearly (ii) e ,  (iii). �9 

We now prove that the set of variations associated with A is large 
enough to insure the equivalent conditions of Lemma 2. 

Actually, in view of (35), it is sufficient to prove the following. 

Lemma 3. Let A and q~ be defined as above. Then 

Ta(dg,("))(TaA,x ) + T~M- = ~(x) j- (37) 

Proof. Since A is a linear subspace of R n(n- 1)/2 we can identify the 
tangent spaces TaA with A itself. Using (30), one gets the following 
expression for the partial derivative with respect to a ~ A : 

T~(d+("))(a,x) = ~ %eg(x ) (38) 
i <j 

where I]~//][ = 112kll[ ~ a/j = akl. 
Comparing with (20), it is equivalent to check that 

+ r x A "  = 

It follows from the definition (15) of the "standard" Hessian at x and 
of (17) that ho(Tx A) c $ (x), and it is sufficient to prove that 

h o ( r x  A) + l = l 

But ho(Tx2x ) and T~/~ j- are supplementary subspaces of ~(x)J-: if 
0 E ho(T~& ) N T~A • then 0 = ho( 0 for some ~ E irA; then 0.  ~ = 0, i.e., 
h0(~,~ ) = 0, which implies ~ E ~(x) • and therefore 0 = ho(~ ) = O. 

Now, dimho(TxA ) = dim Tx2x- dim~(x), and we obtain the stronger 
result: 

ho(T~A ) ~ T~A ~ = ~(x) • �9 (39) 

Lemmas 1 and 2 imply that G is transverse to N on F. A classical theorem 
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of transversality theory asserts the existence of an open neighborhood ~(F) 
of F in V • A such that G is transverse to N on ~(F). 

Since F 0 is closed and U is compact in V, U n F 0 • (0) is compact in 
V • A and is contained in F. Then there exist open neighborhoods ~V(U N 
F0) in V and ~?f'(0) in A, such that qf(U n Fo) x ~"(0) c qf(F). 

An important result of transversality theory (Ref. 9, Lemma 4.6) 
claims that for almost all a E ~ the partial mappings G o : x ~ G ( x ,  a), 
are transverse to N on qf(U n Fo). It follows then from Lemma 1 that for 
almost all a ~ ~ff'(0), the critical points of (eg + ~(a)) (~) lying in ~'~(U N 
F0), are "nondegenerate" for the restriction to A. 

On the other hand dep (") does not vanish on U\F  0, and a for t io r i  on 
U\%(U n F0), a compact subset of V. Then, there exists an open neighbor- 
hood s/If"(0) in A such that d(rp + if(a)) ("~ v ~ 0 on U \ ~ ( U  n F0) for any 
a E s~f,(0). 

Finally, for almost all a ~ ~ ( 0 )  = ~ ' (0 )  n ~ " ( 0 )  and any x ~ U, one 
has either (i) x ~ ~'V'(O n I'0). Then if.x is a critical point of (q0 + if(a)) (") , it 
is nondegenerate for the restriction to 2x. or (ii) x E U\%r(U n F0) and x is 
not critical for (cp + ~(a)) ("~ . 

Now, it follows from the definition of the strong (Whitney) topology 
on C ~(]0, oo[) that the "variation mapping" + :A ~ C ~(]0, m[), defined by 
(28) is continuous. The above remarks yield the following corollary. 

Corollary 1. Let A be any smooth part of the stratification by 
distances, and U an open set arising from the construction (27), and let 
~0 ~ c ~(]0, ~[).  

Then any strong neighborhood of q0 contains a potential ~0 such that 
the critical points of ep0 (") in U are "nondegenerate" for the restriction to/X. 
Since the n-body energies are invariant with respect to isometries, any 
critical point x gives rise to a critical orbit I(x). (9) Then, a modified version 
of a classical theorem (Ref. 9, Proposition 6.3) gives the following corollary. 

Corollary 2. Let A, U, % and % be as above. If x E 0 is a critical 
point of r ~"), the "nondegeneracy" at x of the Hessian of the restriction 
W0 ('~ JA implies that the critical orbit I ( x )  is isolated from other critical orbits 
of q0o ("~ intersecting U. Therefore there are finitely many such orbits which 
intersect U. 

4.2. Density of the "Morse Property" on zl 

Notice that the critical points of cp0 (') in U can be degenerate in 
directions transverse to ZX. 

We now prove that if ~0 is as above, any strong neighborhood of % 
contains a potential q0 k such that the critical points of q0k (n) in U are 
"nondegenerate" in X ("), i.e., q~n) is a "Morse function" on U. 
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Let x I . . . . .  x k be critical points of q0(o n) in U such that I(xl)  . . . . .  
I(xk) are the different critical orbits of q~o (n) intersecting U. Corollary 2 
asserts that there exist relatively compact neighborhoods 9/ in A with 
I(xi) r U c f~i, such that no other critical orbit intersects ~i- We claim that 
for i = 1 . . . .  , k, there exist open neighborhoods ~i of % for the weak 
topology of C ~ oe[), such that Vq~ ~ %i, qJ(~)[~ is a "Morse function" on 
~,. with a unique critical orbit in ~2;. 

Actually, this follows from (1) The mapping of C~ oe[) to C~(A) 
given by cp~ q9 (n) la is continuous for the weak topology. (2) A general- 
theorem of transversality theory (Ref. 9, p. 52) implies that in C ~(A), the 
set of "Morse functions" on ~i is open for the strong or weak topology. 

On the other hand, Cp(o ") has no critical point in U\(Uk=l~'~i), a 
compact subset. The continuity of ~o ~ q0 (") IA yields an open neighborhood 
~o of qo o, such that V+ ~ 'Y0, +(") has no critical point in U\(U~= if]i). 

Now, if ~ E %(0) = U~=o%, ~(") has at most k critical orbits in. U, 
each of them being "nondegenerate" for the restriction. 

The possible degeneracy of the Hessians in directions out of A will be 
removed with the help of the following "variations" centered on critical 
orbits. I f y  E V, we define Xy E C~176 oe[) [see (28)] by 

1 xy(t) = ~ ~ pi j ( t )morl( t -  [ly~l]) 2 (40) 
i<j 

Then, the corresponding n-body energy satisfies, for x ~ V, 

1 • = ~ ~ (llX,jll- IlY~II) 2 (41) 
i<j 

dx(y'~ = ~ (llx/jl[ - IlYo.ll)llx~[I-~,ij(x) (42) 
i<j 

nyx(y ") = ~ [lYvlI-2e,j(Y) | %.(y) (43) 
i<j 

Let us remark that the Hessians Hyx(y ") are of maximal rank, i.e., satisfy 
(14). 

[ .emma 4. Let q0o,f~ 1 . . . . .  f~k and %(0) be as above. Then any 
neighborhood of CPo intersects the open subset ~V (l) = ~;~0) N ~V~ where r is 
the open set of q~ such that ~(') is a "Morse function" on ~1. 

Rroos Consider the set of perturbed potentials CPo + XX~, where 
X E R and X~ is the variation defined by (40) and centered on I(Xl). Since 
dx(~)(xl) = O, I (xl)  is a critical orbit of (~o + XX~,) (") for any k. The 
corresponding Hessian which is simply H~cpo(")+ XH~,,,~,v (n~, will be of 
maximal rank except for a finite number of X, zeros of a certain determi- 
nant. 
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On the other hand, for X small enough the perturbed potential % + 
XXx, belongs to ~V (~ . Finally, there exist arbitrarily small X's such that the 
perturbed n-point energy (% + XXx,) (") is a "'Morse function" on ~1- In 
other words, any (weak or strong) neighborhood ~ of % intersects ~2(1). 

I 
In such an arbitrary neighborhood ON of %, one can pick up a q0 l in 

~V (1) and iterate the previous construction in order to remove the possible 
degeneracy of the next critical orbit. 

After at most k steps, one gets a potential % in an arbitrary (weak or 
strong) neighborhood of % such that cp} ") is a "Morse function" on U. 
Since % is taken arbitrarily close to the initial potential r (cf. Corollary 1), 
we can conclude the following: 

I . emma 5. For any h of the stratification by distances, and any open 
set U arising from the construction (27), the set of cp ~ C ~(]0, oe[) such that 
q0 (") is a "Morse function" on U, is dense in C~176 oe[) for both weak and 
strong topologies. 

4.3. Genericity of the Morse Property on X (') 

One can easily check that the continuity of ep~ cp (') for the weak 
topology (but not for the strong one) implies that for any compact K of 
X ('), the set of cp such that ep (~) is "Morse" on K, is an open subset of 
C~176 oo[) for the weak, and consequently for the strong topology. Then, 
on account of Lemma 5, we have the following lemma. 

L e m m a  6. For any A of the stratification by distances, and any open 
set U arising from the construction (27), the set of cp E C ~ oo[) such that 
cp (") is a "Morse function" on U, is open and dense in C~ oo[) for both 
weak and strong topologies. 

Now, we proceed to the globalization of this result on X ("). This is 
achieved in the following way. The construction (27) associates to any 2 in 
A an open neighborhood U of ~ in A. The collection of these open subsets 
covers the paracompact manifold A. Therefore, one can pick up a count- 
able collection { U~}~e ~, which covers A. On the other hand, the stratifica- 
tion of X (~) by distances gives rise to a finite partition of X (') by smooth 
manifolds A. Consequently, for any n, the set of cp E C~(]0, ~[)  such that 
ep (') is "Morse" on X (n) is a countable intersection of (weak or strong) 
open dense subsets of C~176 oe[). 

The intersection over n does not change this result, and therefore the 
set of cp ~ C~ oo[) such that for all n, cp (') is "Morse" on X (~), is 
residual as well. In other words, the "Morse property" of cp (") on X (") for 
all n/> 2, is generic in C ~(]0, oo[) for both weak and strong topologies. 
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Now, a nice property of the strong topology is that it makes a Baire 
space of C~(]0, oe[) (see Ref. 11, Theorem 4.4), i.e., any residual subset is 
dense. Finally, we obtain the following theorem. 

Theorem 1. The set of 
X (~) for all n, is residual and 
and strong topologies. 

q0 E C~(]0, m[) such that r is "Morse" on 
therefore dense in C ~(]0, m[) for both weak 

Let us remark that the density for the strong topology is a rather 
strong result. For instance if r ~ C ~(]0, oo[) is any given potential and 8 is 
any (strictly) positive function on ]0, ~[ ,  there exists ~b ~ C~(]0, ~[)  with 
[q0 - qJ] < 8, such that 6(") is "Morse" on X (") for all n. 

The methods developed in this section to remove the possible degener- 
acy of critical points can be used to give the following consequence of 
physical interest: 

Any point x ~ X (") is a stable nondegenerate equilibrium for some 
potential q0 in C ~(]0, oe[). Moreover, for a given x the set of such potentials 
is dense in C~(]0, m[) for the C O strong topology: if ~ ~ C~(]0, oe[) is any 
given potential and 8 is any (strictly) positive function on ]0, m[, there 
exists ~ E C~(]0, oe[) with Irp - ~[ < 8 and x is a stable "nondegenerate" 
equilibrium for +("). 

Actually for any x and % a perturbation (28), with a support as small 
as required by 8, can be used to make x into a critical point. Then, in the 
same conditions, a perturbation (40) will make this equilibrium stable and 
nondegenerate. 

Let us conclude this section by giving the following local and direct 
consequence of Lemma 6: for any compact subset K of X ("), the set of 
tp E C~ oe[) such that q0 (~) is "Morse" on K is open and dense in 
C ~(]0, oe[) for both weak and strong topologies. 

5. STRATIFICATION WITH RESPECT TO SYMMETRIES AND 
STABILITY PROPERTIES 

In this section we are concerned with the symmetry properties of 
equilibrium configurations in X (") . 

To be more specific, we have a natural action of the direct product 
I x E (") of the isometry group and the permutation group of n elements: 
for (~, p) E I and o ~ y.(n), define 

V X  ~ X (n) , ( r ,  p, •)(n)x = y ,  Yi  ~-- cr + pX O- 1(/) (44) 

The symmetry group of a configuration x is defined as the isotropy 
group of x for the action (44): 

Gx = ((%p,o) ~ I x E(') I x i = r + 0xo-,(i)} (45) 
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One can check from the definition (1) of X (n) that the correspondence 
between isometrics and permutations defined by (45) is one to one. Actu- 
ally, G x is isomorphic to each of its projections I x on I and N x on E ("). 
Moreover, I x is isomorphic to its projection R x on O(3), and we have 

Ix = ((~',O) E 113o E E(n)z + px i = xo(i) } (46) 

Z, x = ( o ~ E (') [Vi,  j (Ixijl[ = I [ x o ( i ) o ( j ) [ (  } (47) 

The isomorphism between G x and E x comes from a general theorem of 
Euclidean geometry. (8) 

Since the elements of Gx are diffeomorphisms keeping x fixed, the 
corresponding tangent maps are automorphisms of T x X ( ' ) .  They actually 
define a subgroup ~x of Aut TxX(")  which is isomorphic to Gx, and if 
Tx X(" )  is identified with ~3, ~ X(,),  ~x is simply the projection of G x on 
0(3) • E ("), with the following equivalent definition: 

~x = ((p,o) ~ 0(3)  • E (n) Ipxij. = x,,(i),~(j) } (48) 

In order to apply a general result stated below on the action of 
compact Lie groups, we consider the linear submanifold )((") c X (") of 
"centered" configurations, defined by 

2 (n) = X ~ x(n)[ E x i  ~-  0 (49) 
i=1 

Then )((~) is invariant for the action (44) restricted to the subgroup 
0(3) • E (~), since 

V x  e 2 (n), (o, o)(")x = y,  yi = oxo-,(i) (50) 
n ~ " " n and ~ i =  lxi - 0 lmphes ~ i= i Yi = O. 

Moreover, if x ~ X (~), the symmetry group Gx can be identified with 
the isotropy group of x for the action (50). 

The main purpose of this paper is to study the stability of the 
symmetry groups of equilibrium configurations (under small variations of 
the potential). Thus it is necessary to investigate the smoothness properties 
of the subsets of X (') corresponding to a given symmetry group, or to its 
class of conjugation in 0(3) • E (~) . 

We give now a relevant theorem in the general form stated in Ref. 12 
(Theorem 3.3, p. 182, and Corollary 2.5, p. 309): 

Theorem 2. Let G be a compact Lie group acting smoothly on a 
manifold X. Let H be a subgroup of G and let 

S t / =  {x E X[ G~ conjugate to H in G } 

where G x is the isotropy group of x. Then S~/is a smooth submanifold of X 
and its topological boundary is the union of Sr  for K strictly larger than H. 
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This theorem asserts that the subsets 

Sx = (Y E J((") ] G x conjugate to Gy in 0(3)  X E (")) (51) 

are smooth submanifolds of )~(n). 
Now, for any x ~ X ("), define 

S x = { y E X ( " ) l G ~ c o n j u g a t e t o G y i n l x E ( " )  ) (52) 

Then, S~ is the orbit of Sy, for some y ~ )(("), under the action of 
translations, and clearly Sx is a smooth submanifold of X (n) . 

On the other hand, we have the following continuity of E~ with respect 
to x: 

I.emma 7. For any x ~ X ("), there exists a neighborhood ~V(x) in 
X (") such that Vy E ~V(x), E;, is a subgroup of E x. 

Proof.  Suppose the result is false. For some x ~ X (") there exists a 
sequence (y(e)} such that 

(1) lim y(P)=  x p--y oo 

(2) E/p) is not a subgroup of E~, for anyp.  

Since the set E (") \E~ is finite, we can take a subsequence (z  (q)) such that 

(1) lim z (q) = x q---~ oo 

(2) 30 E Z (") \Z~ with o ~ Ez~q~ for any q. 

Then, we have by (47) 

z(q) Vi, j ]lz(,j q) 11 = o(i)o(j) [I 

and letting q ~ oc, Vi, j llx~j[I = I[xo(0o(j)I[, a contradiction. �9 
It follows from this lemma that in any submanifold S~, the subgroups 

E~ are locally constant. Thus if if(x) is a neighborhood which satisfies the 
conclusion of Lemma 7: 

Sx f'l Cg(x) = { y  E f f ( x ) [ I  x conjugate to Iy in I and E x = Ey} (53) 

For any given n, the number of finite symmetry groups (up to a 
conjugation), is obviously finite, and consequently there are only finitely 
many submanifolds S~ covering X ("). 

The partition of X (n) thus defined will be referred to as the stratifica- 
tion with respect to symmetries. It is convenient to consider the following 
submanifold S ~ of Sx: 

S ~ = { y  ~ X(n) IG x = Gy } (54) 

In fact, if y = ('r, p, o)(")x we have obviously Gy = (~-, p, o)Gx(~-, p, o) -1 
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and one checks easily that S~ is the orbit of S ~ under the action of I x Z (~) . 
Moreover, it follows from (53) that S, is "locally" the orbit of S ~ under the 
subgroup I of isometries. 

Now, we have clearly the following equation for the closure S ~ of S ~ 
in X (') : 

S ~  (55) 

and the tangent space g~ = T~S ~ is given by 

g~ = (~ e R3" I V(O, o) e ~ ,  O~i = ~(,)} (56) 

L e m m a  8. For any x ~ X (~), the tangent space T.S  x is equal to 
g~ + ~(x) = $ (x), where 

~(x) = {~ E ~ "  I w  ~ y.~, (x o,~,j) = (xo(,)o(:), ~o(,)o<+))} (57) 

Proof. First, since S x is locally the orbit of S ~ under the isometries, 
we have T=S~ = g ~  ~(x). Obviously (10) implies ~ ( x ) c  $(x).  More- 
over, if ~ E g~ (x/j,~(/) = (pxij,O~ij) = (xo(i)~(j),~o(i)~(j)) and ~ e $(x). 
Thus g~ + ~(x) c g(x). 

Conversely, if ~ e $ (x) let ~ be defined by 

~, --I G~I-' N, 0to-,~,) 
Gx 

Then ~ clearly belongs to S~ Besides, ~ -  ~ belongs to ~(x) since we 
have 

( + ,  t,+ - ~+)= j Gxr- ' y. (x,:,, ~,j - 0~o-,+o-,~j)) 
a~ 

and using (48) and (57) the right-hand-side vanishes. [] 

5.1, Trajectories of Critical Points 

Let )~(') = X ( ' ) / I  be the quotient space of X (') by the isometries and 
denote by ~r the projection of X (n) on )~(n). The definition (14) of the 
"Morse property" for the n-body energies was stated in Section 3. This 
definition is equivalent to the true Morse property for the projection q5 (~) of 
q)(n) on ~(n). 

On account of Section 4, we can define the trajectory of a nongenerate 
critical point, arising from a perturbation of the potential q~. 

Actually for any nondegenerate critical point E of q~(~), the final 
remark of Section 4 asserts the existence of a convex neighborhood 5/(0) in 
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C~(]0, oe[) and a compact neighborhood /( of 2 such that, for any 
E ~V(0) and any h E [0, I], q3 (') + ?t~ (n) is a Morse function i n / (  with a 

unique critical point. Using similar arguments as in one dimension, (7) we 
obtain the equation for the trajectory of the critical point Y which is given 
by 

d(r + = 0 
(58) 

ds 

Notice that the Morse property for the n-body energies is the main 
condition required for the existence of a trajectory, since the degeneracy of 
the Hessian allows bifurcations. 

5.2, Statement of the Stability Property 

It is clear that the stratification by symmetries (53) is invariant with 
respect to isometrics. Thus the image ~r(Sx)= Sx of any stratum is a 
submanifold of )~('), in such a way that we get a stratification of )~('). 

Definition. A submanifold I7 of )~(") is stable iff for any potential q0 
yielding a nondegenerate critical point in 17, and for any small enough 
perturbation of this potential, the corresponding trajectories [defined by 
(58)] remain in l 7. 

Since it is more convenient to deal with X (') than with )~('), we give 
the following equivalent statement: 

Lemma 9. A submanifold I 7 of )~(') is stable iff the submanifold 
Y = 7r-1(17) of X (') satisfies the following condition: 

V x  E Y, Vh ~ %*(x) ,  E(x)  C h ( T x Y  ) (59) 

where $(x) is given by (20) and % * ( x ) c  %(x) is the subset of Hessians 
(21) satisfying (14), i.e., of maximal rank. 

Proof. Let x ~ Y be a "nondegenerate" critical point of cp("). For 
any perturbation + the following properties are clearly equivalent: 

(i) 3~ ~ T~ 17 with H~(")(g) + d~(')()~) = 0 

(it) 3~ ~ T x Y with H~( ' )(~)  + dq~(')( x) = 0 

Thus, using (58), the stability condition is equivalent to 

Vh e % * ( x ) ,  c h(T r) 

since g (x) is spanned by the differentials d~ (") (x). �9 
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5.3. Symmetry Properties of E(x) and %(x) 

The existence of nontrivial symmetry groups implies corresponding 
symmetry properties for the differentials and Hessians: 

Lemma 10. For any x ~ X (") we have 
(i) E (x) c $'(x),  where 

$ ' (x)  = (O ~ 9(x)•  ~ gx ,  O(p,o) (") = 0 ) (60) 

(ii) q(p,o) ~ ~x, Vh ~ %(x) 

h ((p, 0)(")~, (p, o)(")~ ) = h(~, ; ) (61) 

for any ~, ~ ~ ~3,. 

Proof. First let 0 = Y,~<jao-%.(x) E $(x) with Hxo.[[ = ][xk/[[ ~ a q  
= akz. Then, using (48) 

0. (p, o)(")(0 = Z " o ( x o  " , p~o '(oo-'~:)) 
i<j 

= Z ",j(o-'x~,~o-'~)o-'~j3 
i<j 

= 2 ao(~o-'~,)o '(j), ~o-'~oo-'(j)) 
i < j  

Since IIx/ill = Ilxo I(i)o-'(j)II by (47), we have % = (ao(i)o(j) or ao(j)o(i) ) and 
a relabeling of the indices yields 0 .  (p,o)("~(~)= 0.  ~. Secondly, using the 
expression (21) for h we have 

h ((p, G)(n)~, (p, o)(n)~ ) = E bij'(Xij' P~a-'(i)a-l(j))(Xij' P~a-'(i)a-'(j)) 
i<j 

i<j 

Using similar arguments we have bo.= (bo(i)o(j) or bo(j)a(i) ) and % = 
(eo(0o(j) or co(j)o(o) so that a relabeling of the indices completes the proof. 

B 

5.4, Stability of the Stratification by Symmetries 

The symmetry properties of differentials and Hessians, given above, 
yield, on account of Lemma 10, the stability of the symmetry groups: 

Theorem 3. Let q~ be any potential in C~(]0, m[) and assume 
x ~ X (n) is a "nondegenerate" equilibrium configuration of n particles 
interacting through q0. Then for any small enough perturbation ~ of % the 
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corresponding new equilibria have the same symmetry group as x, up to a 
conjugation. 

Proof. The stability of the stratification by symmetries is equivalent 
by Lemma 9 to the foiiowing property: Vx ~ X ("), Vh ~ %*(x), $(x)  
c h(g(x)), where $(x)  is the tangent space (57) of the stratum S x at x. By 
Lemma 10, we have $ ( x ) C  g'(x),  so that is sufficient to prove $ ' (x)  
c h(g(x))  for any h E %*(x). Actually we can check that g ' (x)  = h(g(x)):  

(1) For any 4 r $(x), there exists { ~ g~ by Lemma 8 such that 
4 - ~ E g(x). Then, for any h r %(x), h(4) = h(~). Now for any (p,o) E ~x 
and any f ~ R 3", Lemma 10 gives 

h(4, : )  = h(L : ) = h((o,o)~% (o,o)("): ) 

=h(~,(o,.)("):) 
and h(4) e $'(x), i.e., h(g(x))  C $'(x).  

(2) Conversely let 0 ~ g ' (x)  c 5(x)"  = Imh [for any h E %*(x)]. 
Then 0 = h(4) for some 4 e N 3n. Now for any (O,o) E #x and any ff e N 3n, 
0 ~ $'(x) implies, using Lemma 10, that 

h (4, ~" ) = h ((O, ~ (O, ~ " ) 

= h( (p ,o) (%~)  

Thus h (4) = h ((p, o) (") 4) = h (~) where ~ = I G~I- 1G G (P, ~ 4 obviously be- 
longs to $~  $(x)  (56). In other words, we have $ ' ( x ) c  h(g~ 
= h($ (x)) and finally 

Vh ~ %*(x), ~'(x) = h(~(x))  �9 

Now, the following natural question arises: are the strata of the 
symmetry the smallest stable subsets of X(")? Actually the answer is 
positive, at least on open dense subsets of each stratum. More precisely, we 
have 

Theorem 4. In any stratum S of the stratification by symmetries, 
there exists an open dense subset of points x such that 

Vh ~ %*(x), 6(x) = h(g(x))  (62) 

In other words, if such a point projects on a nondegenerate critical 
point vr(x) in X("), the set of trajectories arising from all possible perturba- 
tions of the potential, locally covers the stratum ~r(S). 

Proof. For any x ~ X ("), we have 

v o  e x~,  [Ix~LI = IIx.(,).~j)II 
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Then, using (17), (18), and (57) we obtain 

TxA C | c $(x) (63) 

However, it follows from a theorem of Whitney (1~ mentioned in 
Section 4, that X (') is covered by a finite number of submanifolds A. The 
inclusion (63) of the tangent spaces implies that, at least locally, any 
stratum 2x intersecting S is contained in S. Consequently the finiteness of 
the stratification by distances implies that TxA ~ $(x) holds only on a 
finite union of closed submanifolds 2x of nonzero codimension in S. Thus 
we have on an open dense subset of S: 

Tx2~ = | = 5(x) (64) 

Moreover, using the "standard" Hessian (15) at x, Theorem 3 implies 

~(x) c h0(g(x)) = h0(e(x)) 

On the other hand, one checks that for any x, ho(|  $(x). Thus 
E(x) = ho(g(x)) (on an open dense subset of S). Since for any h E %*(x), 
Kerh = Kerh 0 = ~-(x), we have $(x)  = h(g(x)) on the same subset. 

Finally, it follows from Eq. (58) of critical points in X(~), that the set 
of trajectories covers a neighborhood of ~r(x) in ~r(S). [] 

We conclude this section by giving a direct consequence of the 
stability property: if a perturbation gives rise to a change of the symmetry 
group of an equilibrium configuration, then, necessarily, this change occurs 
through a degeneracy of the Hessian. 

Conversely, even for large perturbations, as long as the corresponding 
Hessians are nondegenerate, the symmetry group is preserved. 

6. PHYSICAL C O N S E Q U E N C E S  

In the previous sections, we have proved, first, that for almost all 
potentials, the n-body energies are "Morse functions" for all n, and sec- 
ondly, that the possible symmetries of the critical points are stable. 

However, the stratum associated with the trivial group (which consist 
of configuration with no particular symmetry), is open and dense in X (~) 
for all n. On the other hand, we have seen, at the end of Section 4, that any 
configuration in X (') is a nondegenerate equilibrium for some potential. 
Thus, one may ask if the class of potentials giving rise to nontrivial 
symmetries is large enough to contain realistic interactions. 

In this section, we prove that this is actually the case. 
The first step in this direction is given by the following lemma. 

Lemma 11. Let S C X (n) be any stratum of the stratification by 
symmetries. Let q0 be any potential in C ~(]0, oo[). Then any critical point 
for the restriction of ep (n) to S is a critical point for cp (n). 
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Proof. Let x E S be a critical point of qg(~)is. The stability property 
of S gives in particular E (x) c ho(S (x)), where h 0 is the "standard" Hessian 
(14). (See the proof of Theorem 3.) Thus drp (n) ( x ) =  ho( 0 for some ( in 
S (x). Since dq0 (n) (x) vanishes on S (x), we have ho(~, 4) - 0, which implies 

~ #(x), and consequently dep(n)(x) = ho(~ ) = O. [] 
Let us now consider the following class C of realistic potentials: 

= {q0 E C~(]0,~[) l l imrp(t)  = + ~ ,  3r  > 0 such that t > r ~ ' ( t ) >  0} 
t - - - ~  0 - " 

(65) 

Remark that E is open for the strong topology and consists of the potentials 
which are divergent at the origin and attractive at large distances. 

An elementary argument of Euclidean geometry implies that if q~ ~ ~, 
any critical point of ~(") satisfies for any i , j :  Hx~[[ < (n - 1)r. 

Now we claim that for any stratum S c X (") of the stratification by 
symmetries, the lower bound of ep (") in S is reached in S* where 

S* = {x  E S l i  r  xi ~ xj} (66) 

and the closure S is taken in R 3". 
Actually this follows from the continuity of rp (") and the definition (65) 

of E. 
It is clear that points in S*\S ,  either belong to strata S'  with strictly 

larger symmetry groups, or correspond to planar configurations in 
R 3 n \ x ( n )  . 

In other words, for any symmetry group G, we have for the corre- 
sponding stratum S either S* c X (n) for any n (with possibly S = O), or S* 
contains planar configurations for some n. One easily checks that the trivial 
group, the cyclic groups and dihedrals groups fall in the second class, and a 
more careful analysis shows that the first class consists of the groups such 
that any invariant plane is a symmetry plane, i.e., in the Hermann-  
Mauguin notations: O3) 

mmm (orthorhombic system); 
4/rn and 4 / m m m  (tetragonal system); 
6, 6 / m, "62rn, 6 / mmm (hexagonal system); 
m3 and m3m (cubic system); 
the two icosahedron groups. 
For any of these groups, one of the three following cases holds, 

depending on n: 
(i) S = O: the corresponding symmetry is no t  realized in X (') . 

(ii) S* = S 5 a O: there is no strictly larger group than G realized 
in X (") . 

(iii) S * \ S  ~ O: the corresponding symmetry is not maximal. 
Finally, using Lemma 11, we can state the final result: 
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Theorem 5. Let G and n be such that the corresponding stratum S 
satisfies (ii). Then for any ep E C, ~(n) admits at least an equilibrium 
configuration in S with symmetry group G. Moreover, for almost all ~ in C 
(in the Baire sense; see Theorem 1), this previous equilibrium is nondegen- 
erate. 

Remarks. (1) Even if x is a local minimum for ~0~n)ls, nothing can 
be said, up to now, about the mechanical stability of this equilibrium in 
X(n)o (2) The necessary existence of equilibria with different symmetries 
(for a given n) implies in particular that for any ~p in C, cp(") cannot be 
convex on X (n), as opposed to the situation in one dimension. 

7. CONCLUSION 

As a conclusion, we stress the fact that the existence of equilibria with 
nontrivial symmetries is essentially of geometrical nature and does not 
depend on detailed properties of the potential. 

Actually, such nontrivial symmetries arise, for any number of particles, 
for a large class of realistic potentials, namely, those which are infinitely 
repulsive at the origin and attractive at large distances. 

However, the study of the symmetry of the ground states seems to 
require a more precise knowledge of the interaction, since they may have 
no symmetry at all. 

In fact one may ask if some other properties of the interaction, such as 
convexity, could imply symmetry properties for the ground state, as is the 
case in one dimension. 

Nevertheless, there exist potentials giving rise to a ground state of n 
particles with any arbitrary symmetry consistent with n. The stability 
property of the symmetry asserts the existence of a strongly open neighbor- 
hood for any of these potentials, such that the corresponding ground states 
have the same symmetry. For instance, ground states with icosahedron 
symmetry are obtained for strongly open sets of interactions, thus giving a 
theoretical basis to experimental observations. 
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